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Abstract—An explicit algebraic Reynolds stress model (EARSM) is used to perform calculations of canonical
turbulent boundary layers on a flat plate under conditions of zero, adverse, and accelerating pressure gradients.
A comparison of the results with the calculation data obtained using the standard X~ and K—€ models of tur-
bulence and with the known experimental data demonstrates that, in spite of the obvious advantages of the
EARSM over the traditional models in calculating flows with substantial anisotropy of Reynolds stresses, these
advantages. as applied to the class of flows being treated, show up mainly in determining the pulsation param-
eters of flow. Further, the accuracy of the EARSM in all cases depends strongly on the choice of the base model:
from this standpoint, the K—» model is superior to the K-¢ model. The results of calculations of flow past a flat
plate demonstrate the need for a more thorough calibration of the EARSM along with the base model.

INTRODUCTION

Since their inception (early 1970s), the differential
models of Revnolds stress transfer (DRSM) are treated
as a promising alternative to traditional models of tur-
bulence based on the concept of scalar turbulent viscos-
itv (Boussinesq's gradient hypothesis). Nevertheless,
no convincing proof of the real superiority of the
DRSM over the traditional models has yet been found.
At least in part. this is associated with the fact that their
use in caiculation of fairly complex flows (for the inves-
tigation of which the DRSM are primarily intended)
involves serious computational difficulties. That is why
the development of the relevant algebraic models
(ARSM). of which the first was suggested by Rodi [1],
was started almost simultaneously with that of the
DRSM. The practical experience in using the ARSM
has demonstrated that they also suffer from serious dis-
advantages analvzed in detail in a recent paper by Spe-
ziale [2]. In particular, as a result of considerable non-
linearity of model algebraic equations, they fail to guar-
antee the uniqueness of solution. Moreover, the
ARSMs sometimes fail to satisfv the “principle of real-
izability™ formulated by Lumley [3].
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where uju, are components of the Reynolds stress ten-
sor. and. under some conditions. prove to be singular,
this leading to obvious computational problems.

The above-identified shortcomings of ARSM stimu-

lated the attempts at developing the so-called explicit
algebraic Revnolds stress models (EARSM) in which

the input model equations are explicitly resolved in one
way or another relative to Reynolds stresses, which
enables one to attain the uniqueness of solution and
simplify the verification of validity of the principle of
realizability. In recent years, several models of this type

ere suggested (see, for example, [4-7]), which were
used to calculate fairly complex turbulent flows. For
example, as demonstrated by Wallin and Johansson [4].
the EARSM they suggested provides an adequately
exact calculation of steady-state turbulent flow in a
round pipe rotating about its axis. This flow is charac-
terized by the presence of substantial anisotropy of
Reynolds stresses. which leads to an appreciabie non-
linearity of the profile of tangential component of
velocity (this effect in principle cannot be described
within the turbulence models based on the concept of
scalar turbulent viscosity). Therefore, from this stand-
point. the EARSMs exhibit obvious advantages over
traditional “isotropic’” models and, from the gtandpoint
of computational efficiency. are superior to the classical
ARSM, which leads one to treat the development of
models of this group and the investigation of their capa-
bilities as one of the most important aspects of the
semiempirical theory of turbulence [2]. In view of this.
it is of some interest whether the EARSMs provide ade-
quate accuracy in calculating canonical wall flows in
which the anisotropy of Reynolds stresses is not of
great importance. but which may exhibit some other
effects that are difficult to simulate. It is the objective of
the present study to provide an answer to this question
in application to turbulent boundary layers on flat sur-
faces.
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MODEL OF TURBULENCE

The calculations were performed using the EARSM
suggested by Wallin and Johansson [4]. In the general
case of an arbitrary plane flow. this model reduces to
the following relation for the components of the anisot-
ropy tensor of Reynolds stresses:

wu'; 2
= 7"5 = leISEj
> 3B,—-4 ¢ |
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Here, S, = —(——'+-—’) and Q; = —(—'——’)
2= 3\ox, T ox, ) T 2 0x, T ox,
are the components of dimensionless tensors of the
rates of deformation and vorticity, Iy = S;;:S; and Ilg =

Q,;€Q); are second invariants of the respective tensors, T
is the time scale of turbulence. and K is the kinetic

energy of turbulence.
The parameters 3, and [, entering equation (1) are
defined by the relations
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where  is the solution of the following cubic equation:
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The empirical damping function f; introduced into
the model to include the wall effects is defined as f; =
1 — exp(—v*/A*). The empirical constants of the model,
obtained by Wallin and Johansson [4, 5] from the com-

parison of the calculation results with the experimental
data and data of direct numerical simulation [8] by the
steady-state flow in a flat channel, are

C, =225, -1, C; =18, B,=18, A*=26.

405C;

Iy = ———.
$ 7 216C, - 160

For the case of turbulent boundary layer on a flat

surface, the equation of motion contains only one com-

ponent of Reynolds stress tensor ' v' . It can be readily
demonstrated that the following relation may be
derived in the boundary layer approximation from the
general expression (1) for this component:

T = f1BKtoU
2 9y’

which enables one to introduce the turbulent viscosity
determined by the formula

_lelKT

& = 5 .

(2)

3)

In order to close model (1), as any other ARSM, one
must add relations for determining the kinetic energy K
and for the time scale T of turbulence. These relations
provide a basis for the respective ARSM and represent
an important part of the complete model.

In our study, we use the modifications of the K—¢
model of Chien [9] and K—® model of Wilcox [10].
which were specially suggested by Wallin and Johans-
son [4]. The ditference of the employed version of the
Chien model from its original version consists in that
the correlation between the true and modified rates of
dissipation of turbulence is defined by the relation € =

€ + 2VK/y’exp(-Cy*) with the constant C, = 0.04.

rather than by the relation € = € + 2vK/y*. In the K—-©
model of Wilcox, use is made of the following value of
one of its empirical constants: Rg = 10 (instead of eight
in the original model). In so doing, it is assumed in both
cases that the turbulent viscosity appearing in the trans-
port equations for K, €, and o of the respective models
is determined by formula (3).

After K and € or K and ® are found, the time scale
of turbulence is defined either as T = max(K/e. 6 ,/V/€)

[11] or as T = max((B*w)"'. 6 /V/(B*wK)). where B*
is the empirical function of Wilcox’ model [10], which
allows for the wall effects.

For numerical integration of the system of boundary
layer equations, a two-layer implicit difference scheme
of the Crank—Nicholson type was used, which had the
first order of approximation on the longitudinal coordi-
nate and the second order of approximation on the
transverse coordinate. In so doing, the boundary layer
on a flat plate was calculated by the traditional direct
method of solving the boundary layer equations, in
1999

HIGH TEMPERATURE  Vol. 37 No. 6




ASSESSMENT OF THE CAPABILITIES 889

which the longitudinal distribution of velocity was pre-
assigned as the boundary conditions on the external
boundary. The inverse method [12, 13] was used to cal-
culate boundary layers with a pressure gradient, in
which the velocity along the external boundary was
determined by the preassigned distribution of the
boundary layer displacement thickness.

The no-slip and impermeability conditions were
used as the boundary conditions for velocity on the
wall. The quantities K and € on the wall were taken to
be zero, and the specific rate of dissipation @ was deter-
mined, in accordance with [14]. by the formula ® =
60v/(BAY?), where B = 0.075 and Ay is the wall mesh
width.

When the K-€ model was used as basic, the values
of K and € were preassigned on the external boundary.

It was assumed that K was equal to 1073 Uf, , which cor-
responded to a low degree of turbulence of incident
flow in the experiments for which the calculations were
made, and € was determined by the preassigned turbu-
lent viscosity (v, = 1073v) using the formula & =
0.09 Kz/v,. When the K—® model was used as basic, the
value of K was preassigned analogously, and the value
of ® was calculated by the formula ® =

4t /p/(B* e U,5%) [14], where 1, is the wall friction, p
is the density, U, is the velocity on the external bound-
ary of the boundary layer, and &* is the displacement
thickness.

The profiles of the longitudinal component of veloc-
ity and of the respective turbulent characteristics (K and
€ or K and ) were preassigned in the initial cross sec-
tion of the boundary layer.

The calculations were performed in a nonuniform
(crowding of points in the vicinity of the wall) net with
respect to v. The ratio between the neighboring mesh
widths did not exceed 1.05, and the wall mesh width
was selected such that the condition y* < 0.1 would be
valid in the first node after the wall.

DISCUSSION OF THE RESULTS

The known experimental results available from the
database of Stanford University were used as tests for
assessing the capabilities of the EARSM being treated
in calculating plane turbulent boundary layers. In par-
ticular. the boundary layer on a flat plate (experiment
1400 [135]) was treated. as well as boundary layers with
accelerating (experiment 2700 [15]) and adverse
(experiments 0141 [16] and 4800 [13]) pressure gradi-
ents. The results obtained within the EARSM using the
above-described modifications of the K—& model of
Chien and of the K—® model of Wilcox (EARSM-CH
and EARSM-WL, respectively) were compared with
the results of calculations within the original models of
Chien [9] (CH) and Wilcox [10] (WL).
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Fig. 1. The effect of the initial conditions on the calculated
distribution of the friction coefficient in experiment 4800
using the EARSM-CH model: (/) inlet profiles are calcu-
lated using the CH model, (2) EARSM-WL model.
(3) EARSM-CH model.

Unfortunately, the above-identified experimental
results do not include experimental data on the turbu-
lent characteristics of flow in the initial cross section of
the boundary layers being treated, which are required
for preassigning the initial conditions for the respective
transport equations. With a view to determining these
characteristics, the calculation of each one of the
treated flows using each model was preceded by the
calculation of the boundary layer on the plate up to the
cross section in which the calculated value of the dis-
placement thickness coincided with the respective
value in the first experimental cross section (for x = ;).
The resultant velocity profiles and turbulent character-
istics of flow were used as initial (at x = x;) conditions
in performing the main calculation. Obviously, such an
approach is approximate; however, as demonstrated by
the results of special numerical experimeénts, in the case
when the inlet profiles of velocity and turbulent charac-
teristics agree with one another (i.e., are calculated
using one and the same model of turbulence), the
uncertainty in their preassignment affects the calcula-
tion results only in a relatively small zone which is a
minor part of the flow being treated. This is confirmed
by Fig. 1, which gives, by way of example, the longitu-
dinal distribution of the friction coefficient for experi-
ment 4800, calculated by the EARSM-CH model using
the inlet profiles obtained by the method described
above with the aid of the EARSM-CH, CH, and
EARSM-WL models. One can see that all curves
almost coincide with one another even at x = 0.2 m,
while the overall extent of the boundary layer in the
experiment is more than 5 m.
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Fig. 2. Comparison of the results of calculation of the fric-
tion coetficient on a flat plate with the Bradshaw correlation
formula: (/) CH model. (2) WL model. (3) EARSM-CH
model, (4) EARSM-WL model; the dots indicate the Brad-
shaw formula.

The results of the main series of calculations are
given in Figs. 2-10.

In analyzing these results, note. first of all, the fact
that, for the case of boundary layer on a flat plate
(experiment 1400, Figs. 2-4), the EARSM irrespective
of the employed base is inferior to the original CH and
WL models as regards the accuracy of calculation of
the averaged flow parameters. in particular, the friction
coefficient and velocity profile (Figs. 2, 3a). This result
appears quite natural. because the empirical constants
and functions in the CH and WL models were deter-
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mined primarily on the basis of comparison with the
experimental data on the averaged characteristics of
boundary layer on the plate, and those in the EARSM
were based on the results of comparison of the calcula-
tion results with the data of direct numerical simulation
of flow in a flat channel [4. 3].

In calculating the pulsation characteristics of turbu-
lence, all of the treated models predict close profiles of
tangential Reynolds stresses, which are in adequate
agreement with the experimental data [17] (Fig. 3c).
The profiles of the kinetic energy of turbulence calcu-
lated using the WL and CH models differ from each
other appreciably (the WL model exhibits an apprecia-
ble advantage), while both EARSMs predict close
results that agree adequately with experiment (see
Fig. 3b).

Also of interest are the profiles of normal compo-
nents of the Reynolds stress tensor (Fig. 4a), calculated
using the EARSMs (relation (1)). One can see that, irre-
spective of the base employed, the EARSMs produce
close and at least qualitatively correct results: in the
internal region of the boundary layer, the component

v'? proves to be much less than u'"”. Obviously, this
effect cannot be described using the CH and WL mod-
els based on the Boussinesq hypothesis according to
which these components are equal to each other. Fig. 4b
gives the profiles of the tunction F =-0.5f,3,, which,
according to (3), is an analog of the function Cf, (C, =
0.09 is Kolmogorov’s constant) entering most of the
semiempirical models of turbulence. One can see from
this figure that, irrespective of the base employed, the
EARSMs describe qualitatively correctly the behavior
of variation of the function F (in the range of validity of
the wall law, it proves to be almost constant and close
to Kolmogorov’s constant of 0.09).

The results of calculation of the boundary layer on a
flat plate lead one to conclude that, although the

——
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Fig. 3. Comparison of the results of calculation of the profile of (a) velocity, (b) kinetic energy of turbulence, and (¢) tangential Rey-
nolds stress with the experimental data on the boundary layer on a flat plate for x=4.987 m: (/—4) same as in Fig. 2, (5) experimental

data of [13]. (6) experimental data of [17].
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Fig. 4. The profiles of (a) the normal components of the Reynolds s

4.987 m. calculated using the models (3) EARSM-CH and (4) EAR

EARSM is somewhat inferior to the original CH and
WL models as regards the exactness of calculation of
averaged parameters (this disadvantage may apparently
be eliminated by refining the model constants), the finer
pulsation characteristics of flow are predicted by the
EARSM more accurately than by the original models
and, for this case, the Wilcox model-based EARSM has
some advantage over the Chien model-based EARSM.

We will treat the results of calculation of boundary
layers with a pressure gradient.

Figure 5 gives the longitudinal distribution of the
main characteristics of the boundary layer for experi-
ment 2700 (dp/dx < 0). One can see from this figure
that, by and large, this flow is described by all of the
models being treated with adequate accuracy. This
result is quite predictable. because it is known that the
calculation of flows with moderate (not leading to
relaminarization of flow) accelerating pressure gradi-
ents, as well as the calculation of boundary layer with
zero pressure gradient, presents no special difficulties
when using almost all of the known models of turbu-

3

lence.
In view of this, the results ot calculation of bound-
ary layers with adverse pressure gradient, given in
Figs. 6-10. appear to be of more importance.

An analvsis of these results leads to the following

conclusions.

First, in this case. the properties of the model used
as the base are largely “inherited” by the respective
EARSM and essentially define the accuracy of the
results. For example. in both treated cases (experiments
0141 and 4800), the EARSM-WL is superior to the
EARSM-CH as regards the exactness of calculation of
the averaged tflow parameters. This is apparently asso-
ciated with the known disadvantages of the Chien
No. 6 1999
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tress tensor and (b) the function—0.5f,B, on a flat plate for x =

SM-WL. In Fig. 42: [—u'> | ll— v~ .

model and other models of the K—¢ type in calculating
flows with adverse pressure gradient, especially, when
approaching the separation point (this defect of the
original Chien model is clearly seen in Figs. 6, 7).

Second, unlike the previously treated boundary lay-
ers with zero and accelerating pressure gradients. the
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Fig. 5. Comparison of the results of calculation of longitu-
dinal distribution of the main characteristics of boundary
layer with the data of experiment 2700: [—friction coeffi-
cient Cg, [I—tform parameter H. Ill—velocities U, on the
external boundary of the boundary layver: (/—) same as in
Fig. 2; the dots indicate the experiment.
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Fig. 6. Comparison of the results of calculation ot longitu-
dinal distribution of the main characteristics of boundary
layer with the data of experiment 0141. Designations are the
same as in Fig. 5.
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Fig. 7. Comparison of the results of calculation of longitu-
dinal distribution of the main characteristics of boundary
layer with the data of experiment 4800. Designations are the
same as in Fig. 5.
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Fig. 8. Comparison of the experimental and calculated velocity profiles in experiment 4800 forx =

same as in Fig. 5.

Wilcox model-based EARSM is clearly advantageous
over the original Wilcox model. This shows up clearly
in comparing the calculated and experimentally
obtained profiles of velocity (Figs. 8a. 9a) and pulsation
parameters of flow, in particular. the profiles of tangen-
tial Reynolds stresses (Fig. 9c). Note that in experi-
ments, in spite of the presence of a significant pressure
gradient, a section with a logarithmic velocity profile
survives. The EARSM-WL describes this effect quite
adequately, while all other models predict an almost

3.356 m. Designations are the

complete degeneracy of the logarithmic region
(Figs. 8b, 9a). Note further that, in accordance with the
EARSM-WL. the deviation of the function F from the
constant value of 0.09 used in both base models occur-
ring in the logarithmic region is not as significant as
when the EARSM-CH is used (Fig. 10b).

The exactness of calculation of the kinetic energy of

) 2 2
turbulence and its components u«  and v = (see
Figs. 9b, 10a) proves to be far from adequate even
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Fig. 10. The profiles of (a) the normal components of the Reynolds
for x = 3.4 m. calculated using the models (3) EARSM-CH and (4)

the experiment.

when the best of the treated models. namely, EARSM-
WL, is used. Although this does not affect the averaged
flow parameters. which. as already noted, are fully

defined by the quantity «'v', this defect of EARSM
may prove important in calculating more complex
flows in which an important part is played by all com-
ponents of the Reynolds stress tensor.

CONCLUSION

The obtained results lead one to conclude that, as
applied to the calculation of canonical wall turbulent
boundary layers. the advantages of the EARSM over
the traditional models of turbulence show up primarily
when calculating the pulsation parameters of flow,
No. 6 1999
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stress tensor and (b) the function—0.5fB; in experiment 0141

EARSM-WL. In Fig. 10a: I—u' . l—v"" : the dots indicate

although the EARSM fails to provide an adequately
accurate prediction of the kinetic energy of turbulence
and its individual components. It is significant that the

accuracy of EARSM depends considerably on the
choice of the base model and, from this standpoint, the
K- model is superior to the K-¢ model. Finally, the
results of calculation of flow past a flat plate point to the
need for a more thorough adjustment of the EARSM

along with the base model.
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